Effect of ethanol, acetate, and phenol on toluene degradation activity and tod-lux expression in Pseudomonas putida TOD102: evaluation of the metabolic flux dilution model.
نویسندگان
چکیده
The reporter strain Pseudomonas putida TOD102 (with a tod-lux fusion) was used in chemostat experiments with binary substrate mixtures to investigate the effect of potentially occurring cosubstrates on toluene degradation activity. Although toluene was simultaneously utilized with other cosubstrates, its metabolic flux (defined as the toluene utilization rate per cell) decreased with increasing influent concentrations of ethanol, acetate, or phenol. Three inhibitory mechanisms were considered to explain these trends: (1) repression of the tod gene (coding for toluene dioxygenase) by acetate and ethanol, which was quantified by a decrease in specific bioluminescence; (2) competitive inhibition of toluene dioxygenase by phenol; and (3) metabolic flux dilution (MFD) by all three cosubstrates. Based on experimental observations, MFD was modeled without any fitting parameters by assuming that the metabolic flux of a substrate in a mixture is proportional to its relative availability (expressed as a fraction of the influent total organic carbon). Thus, increasing concentrations of alternative carbon sources "dilute" the metabolic flux of toluene without necessarily repressing tod, as observed with phenol (a known tod inducer). For all cosubstrates, the MFD model slightly overpredicted the measured toluene metabolic flux. Incorporating catabolite repression (for experiments with acetate or ethanol) or competitive inhibition (for experiments with phenol) with independently obtained parameters resulted in more accurate fits of the observed decrease in toluene metabolic flux with increasing cosubstrate concentration. These results imply that alternative carbon sources (including inducers) are likely to hinder toluene utilization per unit cell, and that these effects can be accurately predicted with simple mathematical models.
منابع مشابه
A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing.
A tod-luxCDABE fusion was constructed and introduced into the chromosome of Pseudomonas putida F1, yielding the strain TVA8. This strain was used to examine the induction of the tod operon when exposed to benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and aqueous solutions of JP-4 jet fuel constituents. Since this system contained the complete lux cassette (luxCDABE), bacterial bio...
متن کاملCombination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture.
Construction of a hybrid strain which is capable of mineralizing components of a benzene, toluene, and p-xylene mixture simultaneously was attempted by redesigning the metabolic pathway of Pseudomonas putida. Genetic and biochemical analyses of the tod and the tol pathways revealed that dihydrodiols formed from benzene, toluene, and p-xylene by toluene dioxygenase in the tod pathway could be ch...
متن کاملKinetics Modelling of the Biodegradation of Benzene, Toluene and Phenol as Single Substrate and Mixed Substrate by Using Pseudomonas putida
In the present work, kinetics of the biodegradation of benzene, toluene and phenol by using a pure culture of Pseudomonas putida (MTCC 1194) was determined by measuring the specific growth rate and degradation rate with substrate concentration as a function of time in a batch reactor. In general, the degradation rate of benzene, toluene and phenol increased with the increase in the initial subs...
متن کاملTranscriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production.
The unknown genetic basis for improved phenol production by a recombinant Pseudomonas putida S12 derivative bearing the tpl (tyrosine-phenol lyase) gene was investigated via comparative transcriptomics, nucleotide sequence analysis, and targeted gene disruption. We show upregulation of tyrosine biosynthetic genes and possibly decreased biosynthesis of tryptophan caused by a mutation in the trpE...
متن کاملGene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It.
Pseudomonas putida strain (HM346961) was isolated from a consortium of bacteria acclimatized to unleaded gasoline-contaminated water. The consortium can efficiently remove benzene, toluene, ethylbenzene and xylene (BTEX) isomers, and a similar capability was observed with the P. putida strain. Proteome of this strain showed certain similarities with that of other strains exposed to the hydrocar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 86 7 شماره
صفحات -
تاریخ انتشار 2004